fonzeppelin: (Default)
[personal profile] fonzeppelin
Эпиграфом хочу разместить ссылку на статью уважаемого коллеги YouROKer'а, посвященную разбору популярных мифов о СОИ.

...Когда предизент Рейган объявил о начале работ по программе Стратегической Оборонной Инициативы (СОИ), основное внимание публики привлек именно ее лазерный компонент - боевые орбитальные станции с химическими лазерами (т.е. получающими накачку от реакции химических компонентов), предназначенные для уничтожения советских баллистических ракет. Хотя химические лазеры и не являются особо популярными ввиду целого ряда проблем с низкой эффективностью, невысоким качеством и стабильностью луча (значительно ухудшающимися с ростом мощности), а также высокой стоимости расходуемых компонентов, конкретно для космического применения у них имеются два важных преимущества:



"Martin Marietta Zenith Star" - прототип лазера космического базирования мощностью в мегаватт, который предполагалось запустить в 1993 году.

1) Запас энергии для химического лазера хранился в весьма компактной и сравнительно легкой форме химических реактивов. Мегаваттный химический лазер расходовал всего несколько килограмм компонентов за секунду работы. Ядерная или солнечная энергоустановка, способная обеспечить питанием электрический лазер аналогичной мощности имела бы массу более десятка тонн (минимум)

2) Химический лазер не нуждается в громоздких, отводящих тепло радиаторах - он "самоохлаждается", сбрасывая за борт отработанные реактивы. Таким образом, химическая лазерная станция могла быть сравнительно компактной и "маневренной".

Результатом развития лазерного компонента системы СОИ стала SBL (англ. "Space-Based Laser" - "лазер космического базирования") - 35-тонная станция, вооруженная химическим лазером "Альфа", работающим на фториде дейтерия. Выходная мощность лазера должна была достигать 10 мегаватт, фокусируемых при помощи 8-метрового раскладного зеркала - которое предполагалось "позаимствовать" у НАСА, разрабатывавшего как раз нужную военным технологию в рамках проекта Next Generation Space Telescope, ныне известный как многострадальный "Джеймс Уэбб".

При этом, естественно, такая станция должна была быть не единственной. Программа развертывания лазерного компонента СОИ предлагала два варианта. Первый (оптимальный) - развертывание двух десятков лазерных сателлитов, способных двукратно перекрыть всю поверхность Земли. Второй (реалистичный) предполагал развертывание всего десяти лазерных сателлитов, а в дополнение к ним - десяти перенаправляющих орбитальных зеркал, которые должны были перефокусировать лучи от лазерных сателлитов на целях. Рассматривался также сценарий с наземными лазерными станциями и перенаправляющими зеркалами на орбите, но рассчеты показали, что при работе "сквозь атмосферу" потребуются зеркала не менее 30 метров в диаметре. Создание таких конструкций было сочтено слишком дорогой и сложной задачей.



Раскладное зеркало телескопа "Джеймс Уэбб".

Запас химических реагентов на станциях SBL должен был обеспечивать до 500 секунд непрерывного лазерного излучения на полной мощности. Исходя из рассчетного времени в 10 секунд на поражение одной цели, десять космических лазеров могли "взять на себя" до 500 советских МБР и БРПЛ.

Но насколько эффективным было бы это великолепное технически оружие?


Как я неоднократно упоминал ранее, в отношении программы СОИ в русскоязычном сообществе сложилась весьма... параноидальная точка зрения. Программу называют блефом, обманом, профанацией и другими нехорошими словами. Особенно почему-то достается ее лазерному компоненту - видимо, потому, что в 1980-ых он считался наиболее "современным" и именно к нему было приковано наибольшее внимание.

Но ведь луч лазера — это не прямая трубка из света. Луч имеет «вредную» привычку расширяться по мере удаления от его источника и терять свою мощность. А в «звездных войнах» бить ему на тысячи верст. Наши ученые подсчитали: чтобы засечь мчащуюся русскую ракету, оповестить свою противоракетную оборону и навести «лазерную пушку» на цель, американской орбитальной платформе понадобится столько времени, что минимальная дистанция поражения сжимается всего до тысячи километров.

На таком расстоянии лазерный луч диаметром в булавочную головку на выходе превратится у цели в световой круг площадью в сто квадратных метров.


("Сломанный меч империи", за авторством небезызвестного человека-автомата)

Давайте попробуем просчитать теоретическую эффективность лазера SBL, исходя из доступных данных. Точная оценка возможностей лазерного оружия, разумеется, чрезвычайно сложна, но приблизительные подсчеты выполнить нетрудно. И в этом нам поможет следующая формула, позаимствованная с замечательного сайта Atomic Rockets:

RT = 0.305 * D *( L / RL )

В этой формуле,

RT - radius-on-target, радиус луча лазера на цели (в метрах)
D - distance, расстояние до цели (в метрах)
L - wavelength, длина волны излучения лазера (тоже в метрах)
RL - radius of the lens, радиус фокусирующей линзы или зеркала лазера (в метрах)

Попробуем воспользоваться этой формулой, чтобы оценить возможности SBL. К счастью, мы работаем в вакууме, и нам не приходится иметь дело с чрезвычайно сложными "атмосферными" факторами. Для этого, определим основные параметры исходя из предполагаемых характеристик платформы:

L, длина волны нашего лазера - 2,7 микрометра, или 2700 нанометров (то есть 0.0000027 метров). Это соответствует ближнему инфракрасному диапазону.

D, дистанция - возьмем для начала 1000 км (то есть 1000000 метров).

RL, радиус фокусирующего зеркала - 4 метра в соответствии с техническими характеристиками (8-и метровое раскладное зеркало, аналогичное разрабатываемому НАСА для Next Generation Space Telescope - будущему "Джеймс Уэбб").

Подставив эти значения в формулу, получаем:

0.305 * 1000000 * (0.0000027 / 4) = 305000 * 0,000000675 = 0,205875 м.

То есть радиус луча лазера на цели равен примерно 21 сантиметру.

Много ли это или мало относительно мощности луча? Попробуем рассчитать. Радиус нашего "лазерного зайчика" равен 0,21 метра. Соответственно, площадь пятна (по стандартной формуле площади круга) будет равна 0,1385 м2. Или 1385 см2.

Исходя из мощности нашего лазера в 10 мегаватт, мы можем рассчитать, что на каждый квадратный саниметр площади "зайчика" приходится поток энергии равный 10000000 / 1385 = 7220 ватт. Таким образом, на каждый квадратный сантиметр площади "зайчика" каждую секунду поступает 7,22 килоджоуля тепловой энергии.



Киловаттной мощности промышленный лазер прорезает дырки в металле.

Предположим, что поверхность цели изготовлена из стали толщиной в 1 сантиметр. Представим кубик стали объемом в 1 кубический сантиметр. Его масса (усредненно) составляет 7,8 грамма. Температура плавления стали - условно, 1400 С. Удельная теплоемкость стали (усредненно, т.к. она меняется с ростом температуры) - 600 джоулей на кг на градус Цельсия/Кельвина. Удельная теплота плавления - 84000 джоулей на кг.

Исходя из этого, чтобы расплавить 1 грамм стали - нагреть его от 0 градусов (условно!) и до температуры плавления 1400 градусов и затем расплавить - нам потребуется порядка 0,924 килоджоуля энергии. Из них 0,84 будут затрачены на повышение температуры с 0 до 1400 градусов, а 0,084 - на фазовый переход. Для 7,8 грамм (1 кубического сантиметра стали) эта величина составит, соответственно, 7,2 килоджоуля.

Из этого простого рассчета видно, что на поверхность нашей цели поступает достаточно энергии (7,22 киловатта, т.е. 7,22 килоджоуля тепла), чтобы мгновенно ее расплавить. Всего же за секунду наш лазер нагревает до кипения почти килограмм стали.

Разумеется, это лишь чрезвычайно упрощенный пример, где взяты средние величины. В реальных условиях, придется считаться с отражением части поступающей энергии, вопросами теплопроводности и т.д. С другой стороны, в реальных условиях никто не делает космических аппаратов и ракет с сантиметровой толщины стальной обшивкой, а время "прогрева" одной цели согласно требованиям к SBL составляло до 10 секунд.



Лазер MTHEL перехватывает мортирный снаряд в полете.

Напомню также, что основной целью лазеров СОИ являлись не боеголовки. Это распространенная ошибка, имеющая весьма малое отношение к истине. Никто из разработчиков SBL не планировал сверлить лазерным лучом плотное абляционное покрытие боеголовок. Их целями являлись:

* Верхние ступени стартующих МБР и БРПЛ. Взлетающая баллистическая ракета является очень удобной мишенью для лазеров - она легко отслеживается по тепловому факелу ее работающего двигателя, она сравнительно хрупкая и уязвимая, и на этой стадии ее невозможно спрятать среди ложных целей. Кроме того, уничтожение ракеты на разгоне гарантирует уничтожение вместе с ней всех ее боевых частей. Любимые СССР жидкотопливные ракеты, с их тонкостенными баками и сложными, хрупкими двигателями были особо уязвимы для лазерного излучения; твердотопливные ракеты с их толстыми стенками были уязвимы в меньшей степени, но зато гарантированно взрывались при ослаблении стенок двигателя.

* Блоки разведения боевых частей - т.н. "автобусы", отвечающие за растаскивание боеголовок индивидуального наведения по их траекториям. Хотя их сложнее отслеживать, чем сами взлетающие ракеты, с точки зрения уязвимости блоки разведения гораздо более "мягкие" цели. Блок разведения буквально набит баками с топливом, сверхточными акселерометрами системы инерциального наведения, пиропатронами крепления боевых частей. Даже очень кратковременное воздействие лазерного луча практически гарантированно выведет из строя что-нибудь жизненно важное.



Блок разведения МБР MX и закрепленные на нем боеголовки.

* Наконец, уже после того как боеголовки разводились по траекториям - лазеры могли использоваться для фильтрации "легких" ложных целей. Представляющие собой по сути дела надувные баллоны с тонкой оболочкой, ложные цели могли быть "лопнуты" лазером на дистанциях, многократно превосходящих его эффективную дальность. Таким образом, лазеры могли на порядок сократить число ложных целей, облегчая работу противоракетной обороне последнего рубежа.

* Сами боеголовки потенциально тоже могли являться целью для лазера, однако их малые размеры, возможное вращение и очень прочная конструкция существенно затрудняли их уничтожение. Главной проблемой было то, что эффективность лазерного обстрела боеголовки было весьма трудно оценить. Со стороны трудно было понять - превратилась ли боеголовка в бесполезный комок расплава, или же
сохранила боеспособность. Теоретически, лазер SBL можно было использовать, чтобы отклонить боеголовки, сбивая их с курса - используя тягу, создаваемую лазерной абляцией материала обшивки - что приводило бы к снижению их точности.

При этом часто высказывается мнение, что в отношении защиты от лазерного излучения могут помочь некие "дешевые и простые" меры. Например, специальная противолазерная обшивка на ракете или боеголовках. Материалы, правда, при этом иногда называются такие, что волосы встают дыбом - рассмотрим, к примеру, вот этот пассаж:


А ведь последние модели головных частей русских межконтинентальных ракет делались из урана-238: очень тяжелого, твердого и чудовищно тугоплавкого металла цвета запекшейся крови.


("Сломанный меч империи" за авторством небезызвестного человека-автомата)

Я с сожалением должен заключить, что небезызвестный человек-автомат не удосужился свериться даже с справочником физических характеристик металлов. Ибо удельная теплоемкость "чудовищно тугоплавкого" урана составляет всего-навсего... 134 джоуля на кг/С (почти в 6 раз меньше, чем у стали), при температуре плавления 1400 градусов (практически такая же, как и у стали) и удельной теплоте плавления 12600 джоулей на килограмм (в семь раз меньше, чем у стали). С точки зрения противолазерной защиты, уран абсолютно бесполезен.



Гораздо лучшим противолазерным материалом может быть графит. Температура плавления графита составляет порядка 3800 градусов, удельная теплоемкость - от 700 и до 1800 джоулей на кг/С (в зависимости от температуры). Согласно некоторым примерным рассчетам, килограмм графита в качестве антилазерной брони примерно в 67 (!!!) раз эквивалентнее стали. При этом графит значительно легче стали в эквивалентном объеме.

Еще менее эффективным будет использование "зеркальной" обшивки для защиты ракеты, и тем более - боеголовок. Никакое зеркало не является 100% эффективным; оно всегда поглощает какую-то часть излучения, и в случае с 10-мегаваттным лазером, даже 0,1% поглощенного излучения будет существенной величиной. Кроме того, зеркальные поверхности чрезвычайно плохи в плане отдачи накопленного тепла. Под лазерным лучом, зеркало начнет нагреваться; от нагрева, отражающие свойства поверхности зеркала ухудшаться, и еще больше энергии станет поглощаться - до тех пор, пока зеркало не расплавится. Кроме того, создание "зеркальной" обшивки, способной выдержать нагрев при прохождении атмосферы и не загрязниться пылью, не поцарапаться (а любые загрязнения или дефекты - это априори "слабые места" в зеркале) представляет собой головоломную инженерную задачу.



Нет, в реальности это не работает. Извини, Джонни Квест.

Часто задается вопрос "а почему нельзя защитить ракету таким же зеркалом, которое использует лазер?" Дело в плотности энергии. На зеркале, энергия лазера рассредоточена по всей его значительной поверхности, и плотность энергии чрезвычайно низка - для нашего 8-метрового в диаметре зеркала и 10-мегаваттного лазера, это будет порядка (10000000 ватт / 502654 см2 = 19,84) 20 ватт на квадратный сантиметр. Напомним, что плотность энергии на цели будет 7220 ватт на квадратный сантиметр - то есть в 361 раз больше.

Подведем итог: конечно, наши расчеты были весьма условны, и не учитывали множества факторов, но порядок цифр они демонстрируют. Лазерная компонента СОИ определенно не была "заведомым блефом" или "заведомой ошибкой". Это было вполне эффективное (разумеется, трудно предсказать, насколько удачной была бы реализация) решение для чрезвычайно сложной проблемы защиты от массированного ракетного удара, причем решение "горизонтальное" - которое нельзя было эффективно "перепрыгнуть" путем простого увеличения количества развернутых советских МБР.

Date: 2018-12-03 10:04 am (UTC)
From: [identity profile] fonzeppelin.livejournal.com
Можно несколько более внятно изложить вашу претензию?

Date: 2018-12-03 10:18 am (UTC)
From: [identity profile] p2004r.livejournal.com
1)

---8<---

Попробуем воспользоваться этой формулой, чтобы оценить возможности SBL. К счастью,
 мы работаем в вакууме
, и нам не приходится иметь дело с чрезвычайно сложными "атмосферными" факторами."(С)

---8<---

2)

---8<---

Напомню также, что основной целью лазеров СОИ являлись не боеголовки. Это распространенная ошибка, имеющая весьма малое отношение к истине. Никто из разработчиков SBL не планировал сверлить лазерным лучом плотное абляционное покрытие боеголовок.

---8<---


Это вы поясните какое отношение имеет ваш расчет пятна в вакууме с нагревом стали (которой там нет, а есть тот самый "графит" с множителем по стойкости 64) к нагреву в атмосфере (цистерны с тонкой стенкой заполненной жидкостью, которую пока жидкость не испарить прожечь не удастся тем вернее чем стенка будет тоньше).

Date: 2018-12-03 10:37 am (UTC)
From: [identity profile] fonzeppelin.livejournal.com
Если бы речь шла об "Атласе", с его ультратонкими стенками и конструкцией "воздушного шарика", я бы с вами согласился. :) Частично, потому что тонкость стенок автоматически означает что для катастрофической деформации нужен значительно меньший нагрев.

Чтобы эффективно использовать топливо в баках для противолазерной защиты, вам нужна активно охлаждаемая обшивка, либо с торчащими в баки ребрами охлаждения, либо вообще с механизмом циркуляции, непрерывно прогоняющим хладагент. Я с ужасом поедставляю, сколько это все будет весить и стоить, и насколько катастрофически ненадежной будет такая МБР.

Date: 2018-12-03 10:39 am (UTC)
From: [identity profile] p2004r.livejournal.com
Видео с пакетом полиэтиленовым в котором яйцо варится в крутую на костре посмотрели?

Date: 2018-12-03 02:26 pm (UTC)
From: [identity profile] john-jack.livejournal.com
Теплопроводность любого пакета ограничена. А дальше вопрос лишь в интенсивности нагрева. Костёр даёт мало тепла на площадь, обычная турбозажигалка же тот пакет уже не прожигает насквозь, но портит до потери герметичности.
Медь режется лазером без проблем, несмотря на всю свою теплопроводность

Date: 2018-12-03 02:43 pm (UTC)

Date: 2018-12-03 10:42 am (UTC)
From: [identity profile] p2004r.livejournal.com
Ну и я рад что вы согласны, что расчет пятна в вакууме не имеет никакого отношения к "испарению килограммов стали в атмосфере".

Пятно дефокусируется на считанных километрах дальности в атмосфере.

Date: 2018-12-03 10:46 am (UTC)
From: [identity profile] fonzeppelin.livejournal.com
Для чего в атмосфере придумали адаптивную оптику. :) И тот же ABL спокойно стрелял на пару сотен километров.

(осталось, конечно, понять, при чем тут атмосфера...)

Date: 2018-12-03 11:06 am (UTC)
From: [identity profile] p2004r.livejournal.com
И вот на таком уровне все аргументы у вас увы, не надо путать фантастические книжки с реальностью.


1) С каких пор сопровождение цели называется "стрелял"?

2) Про дальность высокоэнергетического пучка вообще ничего нет (и не будет :) ), но закрытие программы более чем красноречиво говорит о достигнутых успехах и перспективах супероружия. В лучшем случае это десяток-другой км в условиях "миллион на миллион".

Более того мощность пучка в атмосфере вообще принципиально ограничена мощностью пробоя, и есть простой предел в энергетике который абсолютно определяет защиту от этого вида оружия в атмосфере.

Date: 2018-12-03 11:24 am (UTC)
From: [identity profile] fonzeppelin.livejournal.com
...Уничтожение ракеты-мишени в полете называется "стрелял". Я, право, затрудняюсь понять, в какой фантастической книге вы прочитали обратное. Рекомендую вам сначала изучить опыт программы ABL, затем рассуждать о "абсолютных пределах".

Date: 2018-12-03 11:34 am (UTC)
From: [identity profile] p2004r.livejournal.com
Там нет никаких "сотен километров" при выстреле на поражение. Откуда вы взяли эту дезу?

Date: 2018-12-03 11:52 am (UTC)
From: [identity profile] fonzeppelin.livejournal.com
Дальность успешного февральского теста ABL в 2010-ом - "over 50 miles". В зависимости от того, каких миль, это более 80,5 - 92,6 км. Сорвавшийся из-за сбоя прицельной системы последующий тест был расчитан на 100 миль.

Date: 2018-12-03 12:11 pm (UTC)
From: [identity profile] p2004r.livejournal.com
Нет этого _нигде_

https://boeing.mediaroom.com/2009-08-13-Boeing-Airborne-Laser-Team-Completes-1st-Airborne-Test-Against-Instrumented-Target-Missile

ничего

https://boeing.mediaroom.com/2009-08-20-Boeing-Airborne-Laser-Team-Fires-High-Energy-Laser-in-Flight

ничего

https://web.archive.org/web/20100215081702/http://www.mda.mil/news/10news0002.html

Вот испытание

--8<--

The Missile Defense Agency demonstrated the potential use of directed energy to defend
against ballistic missiles when the Airborne Laser Testbed (ALTB) successfully destroyed
a boosting ballistic missile. The experiment, conducted at Point Mugu Naval Air Warfare
Center-Weapons Division Sea Range off the central California coast, serves as a proof-of-concept
demonstration for directed energy technology. The ALTB is a pathfinder for the nation’s
directed energy program and its potential application for missile defense technology.

At 8:44 p.m. (PST), February 11, 2010, a short-range threat-representative ballistic missile was
launched from an at-sea mobile launch platform. Within seconds, the ALTB used onboard sensors
to detect the boosting missile and used a low-energy laser to track the target. The ALTB
then fired a second low-energy laser to measure and compensate for atmospheric disturbance.
Finally, the ALTB fired its megawatt-class High Energy Laser, heating the boosting ballistic missile
to critical structural failure. The entire engagement occurred within two minutes of the target
missile launch, while its rocket motors were still thrusting.

This was the first directed energy lethal intercept demonstration against a liquid-fuel boosting
ballistic missile target from an airborne platform. The revolutionary use of directed energy is very
attractive for missile defense, with the potential to attack multiple targets at the speed of light,
at a range of hundreds of kilometers, and at a low cost per intercept attempt compared to current technologies.

Less than one hour later, a second solid fuel short-range missile was launched from a ground location
on San Nicolas Island, Calif. and the ALTB successfully engaged the boosting target with its
High Energy Laser, met all its test criteria, and terminated lasing prior to destroying the second target.
The ALTB destroyed a solid fuel missile, identical to the second target, in flight on February 3, 2010.

--8<--

Ну и где ваши "сотни километров"? Вот что в прессрелизе указывает на это? Гипотетические инсинуации "бороздящие просторы большого театра" вижу, а расстояния никакого нет вообще (там даже ракеты не средней дальности то). Если есть другой источник где дальность поражения цели была приписана, то укажите его прямо здесь.

Date: 2018-12-03 12:15 pm (UTC)
From: [identity profile] p2004r.livejournal.com
Вот испытание

--8<--

The Missile Defense Agency demonstrated the potential use of directed energy to defend
against ballistic missiles when the Airborne Laser Testbed (ALTB) successfully destroyed
a boosting ballistic missile. The experiment, conducted at Point Mugu Naval Air Warfare
Center-Weapons Division Sea Range off the central California coast, serves as a proof-of-concept
demonstration for directed energy technology. The ALTB is a pathfinder for the nation’s
directed energy program and its potential application for missile defense technology.

At 8:44 p.m. (PST), February 11, 2010, a short-range threat-representative ballistic missile was
launched from an at-sea mobile launch platform. Within seconds, the ALTB used onboard sensors
to detect the boosting missile and used a low-energy laser to track the target. The ALTB
then fired a second low-energy laser to measure and compensate for atmospheric disturbance.
Finally, the ALTB fired its megawatt-class High Energy Laser, heating the boosting ballistic missile
to critical structural failure. The entire engagement occurred within two minutes of the target
missile launch, while its rocket motors were still thrusting.

This was the first directed energy lethal intercept demonstration against a liquid-fuel boosting
ballistic missile target from an airborne platform. The revolutionary use of directed energy is very
attractive for missile defense, with the potential to attack multiple targets at the speed of light,
at a range of hundreds of kilometers, and at a low cost per intercept attempt compared to current technologies.

Less than one hour later, a second solid fuel short-range missile was launched from a ground location
on San Nicolas Island, Calif. and the ALTB successfully engaged the boosting target with its
High Energy Laser, met all its test criteria, and terminated lasing prior to destroying the second target.
The ALTB destroyed a solid fuel missile, identical to the second target, in flight on February 3, 2010.

--8<--

Ну и где ваши "сотни километров"? Вот что в прессрелизе указывает на это? Гипотетические инсинуации "бороздящие просторы большого театра" вижу, а расстояния никакого нет вообще (там даже ракеты не средней дальности то). Если есть другой источник где дальность поражения цели была приписана, то укажите его прямо здесь.

(no subject)

From: [identity profile] fonzeppelin.livejournal.com - Date: 2018-12-03 12:25 pm (UTC) - Expand

(no subject)

From: [identity profile] p2004r.livejournal.com - Date: 2018-12-03 12:45 pm (UTC) - Expand

(no subject)

From: [identity profile] fonzeppelin.livejournal.com - Date: 2018-12-03 12:51 pm (UTC) - Expand

(no subject)

From: [identity profile] p2004r.livejournal.com - Date: 2018-12-03 12:56 pm (UTC) - Expand

(no subject)

From: [identity profile] fonzeppelin.livejournal.com - Date: 2018-12-03 02:42 pm (UTC) - Expand

(no subject)

From: [identity profile] p2004r.livejournal.com - Date: 2018-12-05 07:09 am (UTC) - Expand

(no subject)

From: [identity profile] fonzeppelin.livejournal.com - Date: 2018-12-05 07:26 am (UTC) - Expand

(no subject)

From: [identity profile] p2004r.livejournal.com - Date: 2018-12-05 07:32 am (UTC) - Expand

Date: 2018-12-04 08:12 pm (UTC)
From: [identity profile] gholam.livejournal.com
По ту сторону стенки бака кстати может оказаться не топливо а газ наддува - и при достаточной точности наведения можно целиться в верхнюю часть бака которая опустеет почти сразу.

Date: 2018-12-04 08:13 pm (UTC)
From: [identity profile] fonzeppelin.livejournal.com
Yep. Да и вообще в верхнюю часть целиться выгоднее - не в бак, так в блок разведения)

Date: 2018-12-05 07:11 am (UTC)
From: [identity profile] p2004r.livejournal.com
Наддувать бак может и условный баллон расположенный по оси бака, раз уж так это окажется важно для успеха.

Date: 2018-12-05 07:29 am (UTC)
From: [identity profile] gholam.livejournal.com
Какая разница где баллон - по мере расходования топлива, бак пустеет и за стенкой оказывается не жидкость а газ наддува.

Date: 2018-12-05 07:36 am (UTC)
From: [identity profile] p2004r.livejournal.com
Газ "в баллоне", баллон "по оси бака"? Мне даже право как то не удобно :)

Вообще сепарировать топливо от газа наддува не очень приятная задача, и то что тяга стартующей ракеты столь любезно решает эту задачу вовсе не обязательно, что нельзя сделать еще и систему вытеснения.

Date: 2018-12-05 07:44 am (UTC)
From: [identity profile] gholam.livejournal.com
Блин. На пальцах. У нас есть тонкостенный бак с водородом, гидразином, керосином, тетраоксидом азота, кислородом - неважно чем. Заполнен по горлышко. На одном конце стоит двигатель. Запускаем этот двигатель, он начинает сосать из бака топливо, а тяга создаваемая двигателем начинает прижимать остаток топлива к той стороне где оный двигатель стоит. Соответственно на противоположном конце бака получается пустота. Чтобы бак не схлопнулся, наддуваем эту пустоту газом - гелием, азотом, продуктамм горения, неважно чем - важно что в этой части бака у нас уже не жидкость а газ. И тут к нам в бок прилетает импульс мегаваттного лазера.

Date: 2018-12-05 10:08 am (UTC)
From: [identity profile] p2004r.livejournal.com
Ну кто же вам поможет представить себе компенсацирующий расход топлива баллон надуваемый, который _расположен_по_оси_ бака... я лично сдаюсь и уступаю очередь хирургу. :)

Date: 2018-12-05 10:16 am (UTC)
From: [identity profile] fonzeppelin.livejournal.com
Т.е. вы предлагаете в центре подверженной высоким нагрузкам конструкции запихнуть на каких-то подвесочках баллон высокого давления?

(no subject)

From: [identity profile] p2004r.livejournal.com - Date: 2018-12-05 10:24 am (UTC) - Expand

(no subject)

From: [identity profile] vladicusmagnus.livejournal.com - Date: 2022-12-17 08:29 pm (UTC) - Expand

(no subject)

From: [identity profile] silentpom.livejournal.com - Date: 2024-03-24 08:50 pm (UTC) - Expand

(no subject)

From: [identity profile] vladicusmagnus.livejournal.com - Date: 2024-03-26 06:49 am (UTC) - Expand

(no subject)

From: [identity profile] silentpom.livejournal.com - Date: 2024-03-26 07:01 am (UTC) - Expand

(no subject)

From: [identity profile] vladicusmagnus.livejournal.com - Date: 2024-03-29 07:00 pm (UTC) - Expand

(no subject)

From: [identity profile] silentpom.livejournal.com - Date: 2024-03-31 08:13 am (UTC) - Expand

(no subject)

From: [identity profile] vladicusmagnus.livejournal.com - Date: 2024-03-31 08:15 pm (UTC) - Expand

(no subject)

From: [identity profile] silentpom.livejournal.com - Date: 2024-04-01 06:12 am (UTC) - Expand

(no subject)

From: [identity profile] silentpom.livejournal.com - Date: 2024-03-26 07:05 am (UTC) - Expand

(no subject)

From: [identity profile] vladicusmagnus.livejournal.com - Date: 2024-03-29 07:01 pm (UTC) - Expand

Date: 2018-12-05 10:50 am (UTC)
From: [identity profile] gholam.livejournal.com
Это интенесно, какой анобтаниум сохранит прочность и эластичность (достаточную для заполнения бака) в среде жидкого кислорода или тетраоксида азота.

Date: 2018-12-05 10:23 am (UTC)
From: [identity profile] p2004r.livejournal.com
Да даже проще можно, делается _двойная_ стенка у бака и топливо "на выход" прокачивается через это пространство. В результате ступень становиться хоть как то уязвима только в момент полного израсходования топлива, до чего практически никогда не доходит, поскольку импульс четко отмеряют с некоторым запасом. А после того как ступень отделилась, ну пусть попадают.

Вес оболочки скомпенсированной изнутри наддувом будет минимальный, более того жесткость корпуса такого много выше как и несущая способность что вполне позволит более активные маневры совершать ступени.

Date: 2018-12-05 10:49 am (UTC)
From: [identity profile] gholam.livejournal.com
Двойная стенка это двойная масса, а с учётом и так фиговой весовой культуры у советстких ракет - никто никуда вообще не летит.

(no subject)

From: [identity profile] p2004r.livejournal.com - Date: 2018-12-05 11:55 am (UTC) - Expand

(no subject)

From: [identity profile] gholam.livejournal.com - Date: 2018-12-05 04:15 pm (UTC) - Expand

(no subject)

From: [identity profile] fonzeppelin.livejournal.com - Date: 2018-12-05 04:21 pm (UTC) - Expand

(no subject)

From: [identity profile] gholam.livejournal.com - Date: 2018-12-05 04:26 pm (UTC) - Expand

(no subject)

From: [identity profile] fonzeppelin.livejournal.com - Date: 2018-12-05 04:29 pm (UTC) - Expand

(no subject)

From: [identity profile] p2004r.livejournal.com - Date: 2018-12-05 06:56 pm (UTC) - Expand

(no subject)

From: [identity profile] fonzeppelin.livejournal.com - Date: 2018-12-05 06:59 pm (UTC) - Expand

(no subject)

From: [identity profile] p2004r.livejournal.com - Date: 2018-12-16 10:37 am (UTC) - Expand

(no subject)

From: [identity profile] fonzeppelin.livejournal.com - Date: 2018-12-05 10:52 am (UTC) - Expand

(no subject)

From: [identity profile] p2004r.livejournal.com - Date: 2018-12-05 12:15 pm (UTC) - Expand

(no subject)

From: [identity profile] fonzeppelin.livejournal.com - Date: 2018-12-05 12:23 pm (UTC) - Expand

(no subject)

From: [identity profile] p2004r.livejournal.com - Date: 2018-12-05 12:36 pm (UTC) - Expand

(no subject)

From: [identity profile] fonzeppelin.livejournal.com - Date: 2018-12-05 12:40 pm (UTC) - Expand

(no subject)

From: [identity profile] p2004r.livejournal.com - Date: 2018-12-05 12:49 pm (UTC) - Expand

(no subject)

From: [identity profile] fonzeppelin.livejournal.com - Date: 2018-12-05 12:53 pm (UTC) - Expand

(no subject)

From: [identity profile] p2004r.livejournal.com - Date: 2018-12-05 01:06 pm (UTC) - Expand

(no subject)

From: [identity profile] fonzeppelin.livejournal.com - Date: 2018-12-05 01:14 pm (UTC) - Expand

(no subject)

From: [identity profile] p2004r.livejournal.com - Date: 2018-12-05 01:24 pm (UTC) - Expand

(no subject)

From: [identity profile] vladicusmagnus.livejournal.com - Date: 2022-12-17 08:46 pm (UTC) - Expand

(no subject)

From: [identity profile] vladicusmagnus.livejournal.com - Date: 2022-12-17 08:38 pm (UTC) - Expand

Profile

fonzeppelin: (Default)
fonzeppelin

January 2026

S M T W T F S
     12 3
4 56 78910
1112131415 1617
18192021222324
25262728293031

Style Credit

Expand Cut Tags

No cut tags
Page generated Jan. 18th, 2026 08:01 pm
Powered by Dreamwidth Studios