Эпиграфом хочу разместить ссылку на статью уважаемого коллеги YouROKer'а, посвященную разбору популярных мифов о СОИ.
...Когда предизент Рейган объявил о начале работ по программе Стратегической Оборонной Инициативы (СОИ), основное внимание публики привлек именно ее лазерный компонент - боевые орбитальные станции с химическими лазерами (т.е. получающими накачку от реакции химических компонентов), предназначенные для уничтожения советских баллистических ракет. Хотя химические лазеры и не являются особо популярными ввиду целого ряда проблем с низкой эффективностью, невысоким качеством и стабильностью луча (значительно ухудшающимися с ростом мощности), а также высокой стоимости расходуемых компонентов, конкретно для космического применения у них имеются два важных преимущества:

"Martin Marietta Zenith Star" - прототип лазера космического базирования мощностью в мегаватт, который предполагалось запустить в 1993 году.
1) Запас энергии для химического лазера хранился в весьма компактной и сравнительно легкой форме химических реактивов. Мегаваттный химический лазер расходовал всего несколько килограмм компонентов за секунду работы. Ядерная или солнечная энергоустановка, способная обеспечить питанием электрический лазер аналогичной мощности имела бы массу более десятка тонн (минимум)
2) Химический лазер не нуждается в громоздких, отводящих тепло радиаторах - он "самоохлаждается", сбрасывая за борт отработанные реактивы. Таким образом, химическая лазерная станция могла быть сравнительно компактной и "маневренной".
Результатом развития лазерного компонента системы СОИ стала SBL (англ. "Space-Based Laser" - "лазер космического базирования") - 35-тонная станция, вооруженная химическим лазером "Альфа", работающим на фториде дейтерия. Выходная мощность лазера должна была достигать 10 мегаватт, фокусируемых при помощи 8-метрового раскладного зеркала - которое предполагалось "позаимствовать" у НАСА, разрабатывавшего как раз нужную военным технологию в рамках проекта Next Generation Space Telescope, ныне известный как многострадальный "Джеймс Уэбб".
При этом, естественно, такая станция должна была быть не единственной. Программа развертывания лазерного компонента СОИ предлагала два варианта. Первый (оптимальный) - развертывание двух десятков лазерных сателлитов, способных двукратно перекрыть всю поверхность Земли. Второй (реалистичный) предполагал развертывание всего десяти лазерных сателлитов, а в дополнение к ним - десяти перенаправляющих орбитальных зеркал, которые должны были перефокусировать лучи от лазерных сателлитов на целях. Рассматривался также сценарий с наземными лазерными станциями и перенаправляющими зеркалами на орбите, но рассчеты показали, что при работе "сквозь атмосферу" потребуются зеркала не менее 30 метров в диаметре. Создание таких конструкций было сочтено слишком дорогой и сложной задачей.

Раскладное зеркало телескопа "Джеймс Уэбб".
Запас химических реагентов на станциях SBL должен был обеспечивать до 500 секунд непрерывного лазерного излучения на полной мощности. Исходя из рассчетного времени в 10 секунд на поражение одной цели, десять космических лазеров могли "взять на себя" до 500 советских МБР и БРПЛ.
Но насколько эффективным было бы это великолепное технически оружие?
Как я неоднократно упоминал ранее, в отношении программы СОИ в русскоязычном сообществе сложилась весьма... параноидальная точка зрения. Программу называют блефом, обманом, профанацией и другими нехорошими словами. Особенно почему-то достается ее лазерному компоненту - видимо, потому, что в 1980-ых он считался наиболее "современным" и именно к нему было приковано наибольшее внимание.
Но ведь луч лазера — это не прямая трубка из света. Луч имеет «вредную» привычку расширяться по мере удаления от его источника и терять свою мощность. А в «звездных войнах» бить ему на тысячи верст. Наши ученые подсчитали: чтобы засечь мчащуюся русскую ракету, оповестить свою противоракетную оборону и навести «лазерную пушку» на цель, американской орбитальной платформе понадобится столько времени, что минимальная дистанция поражения сжимается всего до тысячи километров.
На таком расстоянии лазерный луч диаметром в булавочную головку на выходе превратится у цели в световой круг площадью в сто квадратных метров.
("Сломанный меч империи", за авторством небезызвестного человека-автомата)
Давайте попробуем просчитать теоретическую эффективность лазера SBL, исходя из доступных данных. Точная оценка возможностей лазерного оружия, разумеется, чрезвычайно сложна, но приблизительные подсчеты выполнить нетрудно. И в этом нам поможет следующая формула, позаимствованная с замечательного сайта Atomic Rockets:
RT = 0.305 * D *( L / RL )
В этой формуле,
RT - radius-on-target, радиус луча лазера на цели (в метрах)
D - distance, расстояние до цели (в метрах)
L - wavelength, длина волны излучения лазера (тоже в метрах)
RL - radius of the lens, радиус фокусирующей линзы или зеркала лазера (в метрах)
Попробуем воспользоваться этой формулой, чтобы оценить возможности SBL. К счастью, мы работаем в вакууме, и нам не приходится иметь дело с чрезвычайно сложными "атмосферными" факторами. Для этого, определим основные параметры исходя из предполагаемых характеристик платформы:
L, длина волны нашего лазера - 2,7 микрометра, или 2700 нанометров (то есть 0.0000027 метров). Это соответствует ближнему инфракрасному диапазону.
D, дистанция - возьмем для начала 1000 км (то есть 1000000 метров).
RL, радиус фокусирующего зеркала - 4 метра в соответствии с техническими характеристиками (8-и метровое раскладное зеркало, аналогичное разрабатываемому НАСА для Next Generation Space Telescope - будущему "Джеймс Уэбб").
Подставив эти значения в формулу, получаем:
0.305 * 1000000 * (0.0000027 / 4) = 305000 * 0,000000675 = 0,205875 м.
То есть радиус луча лазера на цели равен примерно 21 сантиметру.
Много ли это или мало относительно мощности луча? Попробуем рассчитать. Радиус нашего "лазерного зайчика" равен 0,21 метра. Соответственно, площадь пятна (по стандартной формуле площади круга) будет равна 0,1385 м2. Или 1385 см2.
Исходя из мощности нашего лазера в 10 мегаватт, мы можем рассчитать, что на каждый квадратный саниметр площади "зайчика" приходится поток энергии равный 10000000 / 1385 = 7220 ватт. Таким образом, на каждый квадратный сантиметр площади "зайчика" каждую секунду поступает 7,22 килоджоуля тепловой энергии.

Киловаттной мощности промышленный лазер прорезает дырки в металле.
Предположим, что поверхность цели изготовлена из стали толщиной в 1 сантиметр. Представим кубик стали объемом в 1 кубический сантиметр. Его масса (усредненно) составляет 7,8 грамма. Температура плавления стали - условно, 1400 С. Удельная теплоемкость стали (усредненно, т.к. она меняется с ростом температуры) - 600 джоулей на кг на градус Цельсия/Кельвина. Удельная теплота плавления - 84000 джоулей на кг.
Исходя из этого, чтобы расплавить 1 грамм стали - нагреть его от 0 градусов (условно!) и до температуры плавления 1400 градусов и затем расплавить - нам потребуется порядка 0,924 килоджоуля энергии. Из них 0,84 будут затрачены на повышение температуры с 0 до 1400 градусов, а 0,084 - на фазовый переход. Для 7,8 грамм (1 кубического сантиметра стали) эта величина составит, соответственно, 7,2 килоджоуля.
Из этого простого рассчета видно, что на поверхность нашей цели поступает достаточно энергии (7,22 киловатта, т.е. 7,22 килоджоуля тепла), чтобы мгновенно ее расплавить. Всего же за секунду наш лазер нагревает до кипения почти килограмм стали.
Разумеется, это лишь чрезвычайно упрощенный пример, где взяты средние величины. В реальных условиях, придется считаться с отражением части поступающей энергии, вопросами теплопроводности и т.д. С другой стороны, в реальных условиях никто не делает космических аппаратов и ракет с сантиметровой толщины стальной обшивкой, а время "прогрева" одной цели согласно требованиям к SBL составляло до 10 секунд.

Лазер MTHEL перехватывает мортирный снаряд в полете.
Напомню также, что основной целью лазеров СОИ являлись не боеголовки. Это распространенная ошибка, имеющая весьма малое отношение к истине. Никто из разработчиков SBL не планировал сверлить лазерным лучом плотное абляционное покрытие боеголовок. Их целями являлись:
* Верхние ступени стартующих МБР и БРПЛ. Взлетающая баллистическая ракета является очень удобной мишенью для лазеров - она легко отслеживается по тепловому факелу ее работающего двигателя, она сравнительно хрупкая и уязвимая, и на этой стадии ее невозможно спрятать среди ложных целей. Кроме того, уничтожение ракеты на разгоне гарантирует уничтожение вместе с ней всех ее боевых частей. Любимые СССР жидкотопливные ракеты, с их тонкостенными баками и сложными, хрупкими двигателями были особо уязвимы для лазерного излучения; твердотопливные ракеты с их толстыми стенками были уязвимы в меньшей степени, но зато гарантированно взрывались при ослаблении стенок двигателя.
* Блоки разведения боевых частей - т.н. "автобусы", отвечающие за растаскивание боеголовок индивидуального наведения по их траекториям. Хотя их сложнее отслеживать, чем сами взлетающие ракеты, с точки зрения уязвимости блоки разведения гораздо более "мягкие" цели. Блок разведения буквально набит баками с топливом, сверхточными акселерометрами системы инерциального наведения, пиропатронами крепления боевых частей. Даже очень кратковременное воздействие лазерного луча практически гарантированно выведет из строя что-нибудь жизненно важное.

Блок разведения МБР MX и закрепленные на нем боеголовки.
* Наконец, уже после того как боеголовки разводились по траекториям - лазеры могли использоваться для фильтрации "легких" ложных целей. Представляющие собой по сути дела надувные баллоны с тонкой оболочкой, ложные цели могли быть "лопнуты" лазером на дистанциях, многократно превосходящих его эффективную дальность. Таким образом, лазеры могли на порядок сократить число ложных целей, облегчая работу противоракетной обороне последнего рубежа.
* Сами боеголовки потенциально тоже могли являться целью для лазера, однако их малые размеры, возможное вращение и очень прочная конструкция существенно затрудняли их уничтожение. Главной проблемой было то, что эффективность лазерного обстрела боеголовки было весьма трудно оценить. Со стороны трудно было понять - превратилась ли боеголовка в бесполезный комок расплава, или же
сохранила боеспособность. Теоретически, лазер SBL можно было использовать, чтобы отклонить боеголовки, сбивая их с курса - используя тягу, создаваемую лазерной абляцией материала обшивки - что приводило бы к снижению их точности.
При этом часто высказывается мнение, что в отношении защиты от лазерного излучения могут помочь некие "дешевые и простые" меры. Например, специальная противолазерная обшивка на ракете или боеголовках. Материалы, правда, при этом иногда называются такие, что волосы встают дыбом - рассмотрим, к примеру, вот этот пассаж:
А ведь последние модели головных частей русских межконтинентальных ракет делались из урана-238: очень тяжелого, твердого и чудовищно тугоплавкого металла цвета запекшейся крови.
("Сломанный меч империи" за авторством небезызвестного человека-автомата)
Я с сожалением должен заключить, что небезызвестный человек-автомат не удосужился свериться даже с справочником физических характеристик металлов. Ибо удельная теплоемкость "чудовищно тугоплавкого" урана составляет всего-навсего... 134 джоуля на кг/С (почти в 6 раз меньше, чем у стали), при температуре плавления 1400 градусов (практически такая же, как и у стали) и удельной теплоте плавления 12600 джоулей на килограмм (в семь раз меньше, чем у стали). С точки зрения противолазерной защиты, уран абсолютно бесполезен.

Гораздо лучшим противолазерным материалом может быть графит. Температура плавления графита составляет порядка 3800 градусов, удельная теплоемкость - от 700 и до 1800 джоулей на кг/С (в зависимости от температуры). Согласно некоторым примерным рассчетам, килограмм графита в качестве антилазерной брони примерно в 67 (!!!) раз эквивалентнее стали. При этом графит значительно легче стали в эквивалентном объеме.
Еще менее эффективным будет использование "зеркальной" обшивки для защиты ракеты, и тем более - боеголовок. Никакое зеркало не является 100% эффективным; оно всегда поглощает какую-то часть излучения, и в случае с 10-мегаваттным лазером, даже 0,1% поглощенного излучения будет существенной величиной. Кроме того, зеркальные поверхности чрезвычайно плохи в плане отдачи накопленного тепла. Под лазерным лучом, зеркало начнет нагреваться; от нагрева, отражающие свойства поверхности зеркала ухудшаться, и еще больше энергии станет поглощаться - до тех пор, пока зеркало не расплавится. Кроме того, создание "зеркальной" обшивки, способной выдержать нагрев при прохождении атмосферы и не загрязниться пылью, не поцарапаться (а любые загрязнения или дефекты - это априори "слабые места" в зеркале) представляет собой головоломную инженерную задачу.

Нет, в реальности это не работает. Извини, Джонни Квест.
Часто задается вопрос "а почему нельзя защитить ракету таким же зеркалом, которое использует лазер?" Дело в плотности энергии. На зеркале, энергия лазера рассредоточена по всей его значительной поверхности, и плотность энергии чрезвычайно низка - для нашего 8-метрового в диаметре зеркала и 10-мегаваттного лазера, это будет порядка (10000000 ватт / 502654 см2 = 19,84) 20 ватт на квадратный сантиметр. Напомним, что плотность энергии на цели будет 7220 ватт на квадратный сантиметр - то есть в 361 раз больше.
Подведем итог: конечно, наши расчеты были весьма условны, и не учитывали множества факторов, но порядок цифр они демонстрируют. Лазерная компонента СОИ определенно не была "заведомым блефом" или "заведомой ошибкой". Это было вполне эффективное (разумеется, трудно предсказать, насколько удачной была бы реализация) решение для чрезвычайно сложной проблемы защиты от массированного ракетного удара, причем решение "горизонтальное" - которое нельзя было эффективно "перепрыгнуть" путем простого увеличения количества развернутых советских МБР.
...Когда предизент Рейган объявил о начале работ по программе Стратегической Оборонной Инициативы (СОИ), основное внимание публики привлек именно ее лазерный компонент - боевые орбитальные станции с химическими лазерами (т.е. получающими накачку от реакции химических компонентов), предназначенные для уничтожения советских баллистических ракет. Хотя химические лазеры и не являются особо популярными ввиду целого ряда проблем с низкой эффективностью, невысоким качеством и стабильностью луча (значительно ухудшающимися с ростом мощности), а также высокой стоимости расходуемых компонентов, конкретно для космического применения у них имеются два важных преимущества:
"Martin Marietta Zenith Star" - прототип лазера космического базирования мощностью в мегаватт, который предполагалось запустить в 1993 году.
1) Запас энергии для химического лазера хранился в весьма компактной и сравнительно легкой форме химических реактивов. Мегаваттный химический лазер расходовал всего несколько килограмм компонентов за секунду работы. Ядерная или солнечная энергоустановка, способная обеспечить питанием электрический лазер аналогичной мощности имела бы массу более десятка тонн (минимум)
2) Химический лазер не нуждается в громоздких, отводящих тепло радиаторах - он "самоохлаждается", сбрасывая за борт отработанные реактивы. Таким образом, химическая лазерная станция могла быть сравнительно компактной и "маневренной".
Результатом развития лазерного компонента системы СОИ стала SBL (англ. "Space-Based Laser" - "лазер космического базирования") - 35-тонная станция, вооруженная химическим лазером "Альфа", работающим на фториде дейтерия. Выходная мощность лазера должна была достигать 10 мегаватт, фокусируемых при помощи 8-метрового раскладного зеркала - которое предполагалось "позаимствовать" у НАСА, разрабатывавшего как раз нужную военным технологию в рамках проекта Next Generation Space Telescope, ныне известный как многострадальный "Джеймс Уэбб".
При этом, естественно, такая станция должна была быть не единственной. Программа развертывания лазерного компонента СОИ предлагала два варианта. Первый (оптимальный) - развертывание двух десятков лазерных сателлитов, способных двукратно перекрыть всю поверхность Земли. Второй (реалистичный) предполагал развертывание всего десяти лазерных сателлитов, а в дополнение к ним - десяти перенаправляющих орбитальных зеркал, которые должны были перефокусировать лучи от лазерных сателлитов на целях. Рассматривался также сценарий с наземными лазерными станциями и перенаправляющими зеркалами на орбите, но рассчеты показали, что при работе "сквозь атмосферу" потребуются зеркала не менее 30 метров в диаметре. Создание таких конструкций было сочтено слишком дорогой и сложной задачей.
Раскладное зеркало телескопа "Джеймс Уэбб".
Запас химических реагентов на станциях SBL должен был обеспечивать до 500 секунд непрерывного лазерного излучения на полной мощности. Исходя из рассчетного времени в 10 секунд на поражение одной цели, десять космических лазеров могли "взять на себя" до 500 советских МБР и БРПЛ.
Но насколько эффективным было бы это великолепное технически оружие?
Как я неоднократно упоминал ранее, в отношении программы СОИ в русскоязычном сообществе сложилась весьма... параноидальная точка зрения. Программу называют блефом, обманом, профанацией и другими нехорошими словами. Особенно почему-то достается ее лазерному компоненту - видимо, потому, что в 1980-ых он считался наиболее "современным" и именно к нему было приковано наибольшее внимание.
Но ведь луч лазера — это не прямая трубка из света. Луч имеет «вредную» привычку расширяться по мере удаления от его источника и терять свою мощность. А в «звездных войнах» бить ему на тысячи верст. Наши ученые подсчитали: чтобы засечь мчащуюся русскую ракету, оповестить свою противоракетную оборону и навести «лазерную пушку» на цель, американской орбитальной платформе понадобится столько времени, что минимальная дистанция поражения сжимается всего до тысячи километров.
На таком расстоянии лазерный луч диаметром в булавочную головку на выходе превратится у цели в световой круг площадью в сто квадратных метров.
("Сломанный меч империи", за авторством небезызвестного человека-автомата)
Давайте попробуем просчитать теоретическую эффективность лазера SBL, исходя из доступных данных. Точная оценка возможностей лазерного оружия, разумеется, чрезвычайно сложна, но приблизительные подсчеты выполнить нетрудно. И в этом нам поможет следующая формула, позаимствованная с замечательного сайта Atomic Rockets:
RT = 0.305 * D *( L / RL )
В этой формуле,
RT - radius-on-target, радиус луча лазера на цели (в метрах)
D - distance, расстояние до цели (в метрах)
L - wavelength, длина волны излучения лазера (тоже в метрах)
RL - radius of the lens, радиус фокусирующей линзы или зеркала лазера (в метрах)
Попробуем воспользоваться этой формулой, чтобы оценить возможности SBL. К счастью, мы работаем в вакууме, и нам не приходится иметь дело с чрезвычайно сложными "атмосферными" факторами. Для этого, определим основные параметры исходя из предполагаемых характеристик платформы:
L, длина волны нашего лазера - 2,7 микрометра, или 2700 нанометров (то есть 0.0000027 метров). Это соответствует ближнему инфракрасному диапазону.
D, дистанция - возьмем для начала 1000 км (то есть 1000000 метров).
RL, радиус фокусирующего зеркала - 4 метра в соответствии с техническими характеристиками (8-и метровое раскладное зеркало, аналогичное разрабатываемому НАСА для Next Generation Space Telescope - будущему "Джеймс Уэбб").
Подставив эти значения в формулу, получаем:
0.305 * 1000000 * (0.0000027 / 4) = 305000 * 0,000000675 = 0,205875 м.
То есть радиус луча лазера на цели равен примерно 21 сантиметру.
Много ли это или мало относительно мощности луча? Попробуем рассчитать. Радиус нашего "лазерного зайчика" равен 0,21 метра. Соответственно, площадь пятна (по стандартной формуле площади круга) будет равна 0,1385 м2. Или 1385 см2.
Исходя из мощности нашего лазера в 10 мегаватт, мы можем рассчитать, что на каждый квадратный саниметр площади "зайчика" приходится поток энергии равный 10000000 / 1385 = 7220 ватт. Таким образом, на каждый квадратный сантиметр площади "зайчика" каждую секунду поступает 7,22 килоджоуля тепловой энергии.

Киловаттной мощности промышленный лазер прорезает дырки в металле.
Предположим, что поверхность цели изготовлена из стали толщиной в 1 сантиметр. Представим кубик стали объемом в 1 кубический сантиметр. Его масса (усредненно) составляет 7,8 грамма. Температура плавления стали - условно, 1400 С. Удельная теплоемкость стали (усредненно, т.к. она меняется с ростом температуры) - 600 джоулей на кг на градус Цельсия/Кельвина. Удельная теплота плавления - 84000 джоулей на кг.
Исходя из этого, чтобы расплавить 1 грамм стали - нагреть его от 0 градусов (условно!) и до температуры плавления 1400 градусов и затем расплавить - нам потребуется порядка 0,924 килоджоуля энергии. Из них 0,84 будут затрачены на повышение температуры с 0 до 1400 градусов, а 0,084 - на фазовый переход. Для 7,8 грамм (1 кубического сантиметра стали) эта величина составит, соответственно, 7,2 килоджоуля.
Из этого простого рассчета видно, что на поверхность нашей цели поступает достаточно энергии (7,22 киловатта, т.е. 7,22 килоджоуля тепла), чтобы мгновенно ее расплавить. Всего же за секунду наш лазер нагревает до кипения почти килограмм стали.
Разумеется, это лишь чрезвычайно упрощенный пример, где взяты средние величины. В реальных условиях, придется считаться с отражением части поступающей энергии, вопросами теплопроводности и т.д. С другой стороны, в реальных условиях никто не делает космических аппаратов и ракет с сантиметровой толщины стальной обшивкой, а время "прогрева" одной цели согласно требованиям к SBL составляло до 10 секунд.

Лазер MTHEL перехватывает мортирный снаряд в полете.
Напомню также, что основной целью лазеров СОИ являлись не боеголовки. Это распространенная ошибка, имеющая весьма малое отношение к истине. Никто из разработчиков SBL не планировал сверлить лазерным лучом плотное абляционное покрытие боеголовок. Их целями являлись:
* Верхние ступени стартующих МБР и БРПЛ. Взлетающая баллистическая ракета является очень удобной мишенью для лазеров - она легко отслеживается по тепловому факелу ее работающего двигателя, она сравнительно хрупкая и уязвимая, и на этой стадии ее невозможно спрятать среди ложных целей. Кроме того, уничтожение ракеты на разгоне гарантирует уничтожение вместе с ней всех ее боевых частей. Любимые СССР жидкотопливные ракеты, с их тонкостенными баками и сложными, хрупкими двигателями были особо уязвимы для лазерного излучения; твердотопливные ракеты с их толстыми стенками были уязвимы в меньшей степени, но зато гарантированно взрывались при ослаблении стенок двигателя.
* Блоки разведения боевых частей - т.н. "автобусы", отвечающие за растаскивание боеголовок индивидуального наведения по их траекториям. Хотя их сложнее отслеживать, чем сами взлетающие ракеты, с точки зрения уязвимости блоки разведения гораздо более "мягкие" цели. Блок разведения буквально набит баками с топливом, сверхточными акселерометрами системы инерциального наведения, пиропатронами крепления боевых частей. Даже очень кратковременное воздействие лазерного луча практически гарантированно выведет из строя что-нибудь жизненно важное.

Блок разведения МБР MX и закрепленные на нем боеголовки.
* Наконец, уже после того как боеголовки разводились по траекториям - лазеры могли использоваться для фильтрации "легких" ложных целей. Представляющие собой по сути дела надувные баллоны с тонкой оболочкой, ложные цели могли быть "лопнуты" лазером на дистанциях, многократно превосходящих его эффективную дальность. Таким образом, лазеры могли на порядок сократить число ложных целей, облегчая работу противоракетной обороне последнего рубежа.
* Сами боеголовки потенциально тоже могли являться целью для лазера, однако их малые размеры, возможное вращение и очень прочная конструкция существенно затрудняли их уничтожение. Главной проблемой было то, что эффективность лазерного обстрела боеголовки было весьма трудно оценить. Со стороны трудно было понять - превратилась ли боеголовка в бесполезный комок расплава, или же
сохранила боеспособность. Теоретически, лазер SBL можно было использовать, чтобы отклонить боеголовки, сбивая их с курса - используя тягу, создаваемую лазерной абляцией материала обшивки - что приводило бы к снижению их точности.
При этом часто высказывается мнение, что в отношении защиты от лазерного излучения могут помочь некие "дешевые и простые" меры. Например, специальная противолазерная обшивка на ракете или боеголовках. Материалы, правда, при этом иногда называются такие, что волосы встают дыбом - рассмотрим, к примеру, вот этот пассаж:
А ведь последние модели головных частей русских межконтинентальных ракет делались из урана-238: очень тяжелого, твердого и чудовищно тугоплавкого металла цвета запекшейся крови.
("Сломанный меч империи" за авторством небезызвестного человека-автомата)
Я с сожалением должен заключить, что небезызвестный человек-автомат не удосужился свериться даже с справочником физических характеристик металлов. Ибо удельная теплоемкость "чудовищно тугоплавкого" урана составляет всего-навсего... 134 джоуля на кг/С (почти в 6 раз меньше, чем у стали), при температуре плавления 1400 градусов (практически такая же, как и у стали) и удельной теплоте плавления 12600 джоулей на килограмм (в семь раз меньше, чем у стали). С точки зрения противолазерной защиты, уран абсолютно бесполезен.

Гораздо лучшим противолазерным материалом может быть графит. Температура плавления графита составляет порядка 3800 градусов, удельная теплоемкость - от 700 и до 1800 джоулей на кг/С (в зависимости от температуры). Согласно некоторым примерным рассчетам, килограмм графита в качестве антилазерной брони примерно в 67 (!!!) раз эквивалентнее стали. При этом графит значительно легче стали в эквивалентном объеме.
Еще менее эффективным будет использование "зеркальной" обшивки для защиты ракеты, и тем более - боеголовок. Никакое зеркало не является 100% эффективным; оно всегда поглощает какую-то часть излучения, и в случае с 10-мегаваттным лазером, даже 0,1% поглощенного излучения будет существенной величиной. Кроме того, зеркальные поверхности чрезвычайно плохи в плане отдачи накопленного тепла. Под лазерным лучом, зеркало начнет нагреваться; от нагрева, отражающие свойства поверхности зеркала ухудшаться, и еще больше энергии станет поглощаться - до тех пор, пока зеркало не расплавится. Кроме того, создание "зеркальной" обшивки, способной выдержать нагрев при прохождении атмосферы и не загрязниться пылью, не поцарапаться (а любые загрязнения или дефекты - это априори "слабые места" в зеркале) представляет собой головоломную инженерную задачу.

Нет, в реальности это не работает. Извини, Джонни Квест.
Часто задается вопрос "а почему нельзя защитить ракету таким же зеркалом, которое использует лазер?" Дело в плотности энергии. На зеркале, энергия лазера рассредоточена по всей его значительной поверхности, и плотность энергии чрезвычайно низка - для нашего 8-метрового в диаметре зеркала и 10-мегаваттного лазера, это будет порядка (10000000 ватт / 502654 см2 = 19,84) 20 ватт на квадратный сантиметр. Напомним, что плотность энергии на цели будет 7220 ватт на квадратный сантиметр - то есть в 361 раз больше.
Подведем итог: конечно, наши расчеты были весьма условны, и не учитывали множества факторов, но порядок цифр они демонстрируют. Лазерная компонента СОИ определенно не была "заведомым блефом" или "заведомой ошибкой". Это было вполне эффективное (разумеется, трудно предсказать, насколько удачной была бы реализация) решение для чрезвычайно сложной проблемы защиты от массированного ракетного удара, причем решение "горизонтальное" - которое нельзя было эффективно "перепрыгнуть" путем простого увеличения количества развернутых советских МБР.
no subject
Date: 2018-12-05 12:15 pm (UTC)2) Какой "змеевик", там просто топливо сквозь сендвич из двух стенок (более тонких чем одна исходная).
3) Какой качать? Тот же наддув загонит топливо между стенками...
Таким образом имеем воображаемый лазер (за гранью фантастики даже сейчас) против простого наддуваемого бака с двойной стенкой.
Но конечно же, "американьский лазер" будет реальнее :))) Это если что, был САРКАЗМ (а то я как то уже и не уверен -- все ли поймут :( ).
no subject
Date: 2018-12-05 12:23 pm (UTC)2) Угу, а теперь попробуйте уговорить двигатели ракеты работать в таком режиме подачи. :)
3) Просто великолепно. То есть если раньше наддув должен был всего лишь толкать топливо из баков в трубопроводы, то теперь он должен его равномерно качать в пространство между стенками с таким расчетом, чтобы количество стекающего по стенкам топлива в каждой точке ракеты было достаточно для отвода тепла, и в то же время, чтобы двигатели питались равномерно и без перебоев.
Я не уверен, что такую задачу и современная-то технология сумеет решить. Уж очень через... используемое для других нужд отверстие задумано. :(
"
Но конечно же, "американьский лазер" будет реальнее"
Да, лазер куда реальнее этого кошмарного супертермоса, который еще и летать должен. :)
Вы не пробовали сначала обдумывать свои идеи, затем предлагать их, а? :)
no subject
Date: 2018-12-05 12:36 pm (UTC)2) Откровенно говорю _не_понял_. В каком именно режиме?
3) И сейчас наддув точно также "толкает в трубопровод". Это же _жидкость_, она текёт :) Нет никакой проблемы вытеснить жидкость через канал _любой_ формы.
Или вы считаете, что если трубопровод сначала поднялся, а потом опустился, то толкать в такой трубопровод будет энергетически затратно???
4) Вы попробуйте не на картинку посмотреть "где лазер (струей газа на самом деле) режет". А просто попробовать разрезать (без газа) лист фольги плавающий на поверхности воды в тазике каком?
Тогда будете говорить за степень реальности описываемых вами _откровенно_сказочных_ процессов.
no subject
Date: 2018-12-05 12:40 pm (UTC)2) Я так понимаю, вы забыли, что у ракеты внизу двигатели? :) И что топливо она возит не просто так?
3) Покажите мне, пожалуйста, ракету, где турбонаддув подавал бы топливо - под ускорением, я замечу - вверх? :)
4) Понятно, аргументы у вас закончились. :) Чужие начали подворовывать.
no subject
Date: 2018-12-05 12:49 pm (UTC)Минуточку, я просто зафиксирую пассаж :), то есть вы таки уверены, что путь которым идет замкнутый и заполненный жидкостью трубопровод между двумя точками в пространстве влияет на усилие проталкивание в него с подающего конца очередной порции жидкости?
Просто ответьте: "путь влияет" или "путь не влияет".
no subject
Date: 2018-12-05 12:53 pm (UTC)...Так, ясно, с понятием гидравлического сопротивления гражданин не знаком...
no subject
Date: 2018-12-05 01:06 pm (UTC)Ну вот бак исходно, на всю свою высоту заполнен топливом. Если в дне бака врезан штуцер из которого мы забираем топливо, то по моему очевидно, что не важно каким путем внутри бака идет шланг который надет с внутренней стороны этого штуцера.
Когда топливо начинают расходовать, то уменьшающее давление на стенки бака (а значит и давление _в_ баке) компенсируют наддувом до прежних величин.
Ну какая разница каким путем идет шланг в этом баке?
PS ну а выдумывать что шланг настолько узкий что наступаем фимоз это вообще за гранью. Длина окружности бака двухметрового диаметра дает на сантиметровой щели между слоями обшивки 20см _радиуса трубопровод. Ничего тормозить в нем просто не может.
no subject
Date: 2018-12-05 01:14 pm (UTC)...А теперь подвергаем всю конструкцию перегрузке порядка 10 g, и ВНЕЗАПНО оказывается что путь, которым идет эта чрезвычайно тяжелая жидкость имеет значение. :)
"PS ну а выдумывать что шланг настолько узкий что наступаем фимоз это вообще за гранью. Длина окружности бака двухметрового диаметра дает на сантиметровой щели между слоями обшивки 20см _радиуса трубопровод. Ничего тормозить в нем просто не может."
Да при чем тут тормозить? У вас топливо плещется по широченной щели между обшивками (где еще и соединительные торчат, кстати), качаясь сквозь нее под большим давлением. И это все в взлетающей и вибрирующей ракете. Каким образом вы обеспечите стабильность подачи топлива через всю эту конструкцию, так, чтобы турбонасосы не были вынуждены постоянно компенсировать динамические нагрузки и неравномерность подачи?
no subject
Date: 2018-12-05 01:24 pm (UTC)Неа, условия будут _точно_такие_ как начале движения с полным баком (ровно такое же давление на выходе штуцера и входе в произвольно проложенный шланг внутри бака). Наддув _ровно_такой_ как уменьшающееся давление из-за расхода топлива и уменьшение его "столба над штуцером забора топлива".
(ну какая разница баку что его распирает с конкретным давлением, воздух или топливо? С топливом так больше проблем наоборот "к низу больше давит", с наддувом "равномерно давит". вполне рабочая конструкция даже имеющая дополнительные бонусы ввиду резерва по прочности на маневрирование с направлением вектора ускорения не только "вдоль бака").
Вы не понимаете гидростатики в этой задаче принципиально. Ну не верите мне, покажите чертеж этого бака с наддувом и шлангом внутри тому, кому доверяете.
no subject
Date: 2022-12-17 08:46 pm (UTC)Вы не понимаете проблемы. Ракета летит на самом деле под очень фиговым углом. Например, ракета имеет аж целых три вектора. Реальный — то есть куда ракета летит (обычно, ну, навскидку, 60-70 градусов, носовой (куда показывает нос ракеты), обычно 50-60 градусов. И вектор тяги, который не совпадает ни с тем, ни с другим. Поэтому из за такой странной математики, топливо будет отталкиваться строго в противоположную сторону. А конкретно вниз, к двигателю, и вниз к нижней части ракеты (ближайшей к Земле). В итоге тонны топлива в разбалансированной ракете, сделают невозможным управление оной, что буквально за 10-15 секунд приведет к "клеванию" носом "вверх", ну и так как автоматика с такой ересью не справится однозначно, это приведет к кувырканию ракеты, и ее катастрофическому разрушению.
no subject
Date: 2022-12-17 08:38 pm (UTC)А представь, сколько это топливо "в стенках" весит... И как его будет колбасить... Ведь оно "летит", по вектору ускорения (ну то есть строго наоборот, если быть занудой)... И как развесовка полетит к ебеням. К слову, после таких приколов, как раз таки понимаешь, почему целый здоровенный отдел, занимается снарядами с жидким наполнением (ртутью, например).